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Motivation

When prior information is available, Bayesian inference offers

major advantages:

• Stability in small samples: Prior knowledge can regularize

inference, reducing variance and avoiding overfitting.

• Probabilistic answers: Posterior distributions allow direct

computation of credible intervals and event probabilities (e.g.,

P(θ > 0 | data)).

• Coherence and interpretability: Bayesian updating follows

intuitive rules and aligns well with decision-theoretic principles.

But prior knowledge is not always available, for example:

• Predictions for new disease (Covid-19)

• New drug evaluation (no clinical precedent)

• First-time market entry (no historical sales data)

• Policy pilot studies (no prior implementation)
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Problems when prior is missing

• The Bayesian approach becomes fragile or arbitrary (e.g.,

sensitivity to flat or improper priors).

• Attempts to remain “non-informative” can lead to paradoxes

or misleading results, especially in high dimensions.

• Objective priors are not always justifiable or practically

meaningful.

Ryan’s work offers alternative inferential frameworks that retain

the benefits of Bayesian reasoning—without requiring prior

information.
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Author Background

Ryan is a pioneer in prior-free probabilistic inference.

Selected Publications:

• Martin, R. and Liu, C. (2013). Inferential models: A framework for

prior-free posterior probabilistic inference. Journal of the American

Statistical Association, 108(501), 301–313.

• Martin, R. and Liu, C. (2015). Conditional inferential models: Combining

information for prior-free probabilistic inference. Journal of the Royal

Statistical Society: Series B, 77(1), 195–217.

• Martin, R. and Liu, C. (2015). Inferential Models: Reasoning with

Uncertainty. Monograph, Chapman & Hall/CRC Press.

• Martin, R. (2021). On an inferential model construction using generalized

associations. Journal of Statistical Planning and Inference, 211, 80–94.

• Martin, R. (2025). A new Monte Carlo method for valid prior-free

possibilistic statistical inference. Preprint available at arXiv:2501.10585.
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Topic

• The paper proposes a novel framework for prior-free Bayesian

inference.

• It constructs an inner probabilistic approximation to a valid

inferential model (IM).
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Key Contributions (1/2)

1. Reimagined Prior-Free Bayesian Inference

• Starts from a data-driven inferential model (IM), framed as a

possibility rather than probability measure with exact

coverage.

• Constructs a novel inner probabilistic approximation, which

inherits many IM properties.

2. Strong Reliability Guarantees

• Posterior-like distributions with exact frequentist coverage.

• Avoids the pitfalls of default priors and the limitations

described by the false confidence theorem; assignment of

high confidence to false values with arbitrarily high probability.
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Key Contributions (2/2)

3. Agreement with Familiar Approaches (when appropriate)

• Recovers Bayes/fiducial solutions in classes of models

(group-invariant ones).

• Maintains connection to traditional inferential results like the

Bernstein–von Mises theorem.

4. Practical Relevance

• Introduces a Monte Carlo algorithm for computation.

• Demonstrates valid and efficient inference in the

Behrens–Fisher problem.
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Critical Assessment: Theory

Strengths:

• Innovative and mathematically rigorous.

• Addresses longstanding issue of prior misspecification.

• Strong frequentist properties with Bayesian-style inference.

Challenges:

• Are inner approximations unique? If not, guidance on

optimality, maybe by judging divergence from the IM contour?

• What are the limits of the approach in high dimensions?

• Theoretical guarantees for approximate sampling?
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Critical Assessment: Practice

Strengths:

• Simple illustrations clarify the construction and intuition.

• Potentially more robust than default Bayes in practice.

Questions for Discussion:

• How do we scale this to complex models (e.g., hierarchical

models)?

• Can one derive connections to empirical Bayes or variational

Bayes?
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Conclusion

Takeaway:

• The proposed approach offers a fresh perspective on prior-free

inference with strong guarantees.

• Blends Bayesian reasoning with frequentist coverage – without

reliance on arbitrary priors.

Promising Directions:

• Flexible, modular, and addresses a major gap in the literature.

• Worth exploring further for complex and real-world problems.

• Study theoretical properties of sampling algorithms.
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Thank you!
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Technical Appendix
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Valid Possibilistic Inference and Confidence Sets

• Given data X = x , define the contour:

πx(θ) = Pθ{R(X , θ) ≤ R(x , θ)}

where R(x , θ) is the relative likelihood.

• Induced possibility measure: Πx(H) = supθ∈H πx(θ)

• Validity property: supθ∈T Pθ{πX (θ) ≤ α} ≤ α

• Confidence Set

A set Cα(x) = {θ ∈ T : πx(θ) ≥ α} satisfies

Pθ{Cα(X ) ̸∋ θ} ≤ α for all θ

• So Cα(x) is a 100(1− α)% confidence set for θ.

• IM’s inferential weight: reject hypothesis H if Πx(H) ≤ α

with the frequentist Type I error α.
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Inner Probabilistic Approximations

• Credal Set Characterization:

Qx ∈ C (Πx) ⇐⇒ Qx{Cα(x)} ≥ 1− α ∀α ∈ [0, 1] (1)

• A credal set C (·) contains probability measures that represent

a decision maker’s beliefs under uncertainty

• Each Qx gives at least 1− α probability to the confidence

region Cα(x).

• These distributions are known as confidence distributions.

• Mixture Characterization (Martin, 2025):

Qx(·) =
∫ 1

0

Kβ
x (·)Mx(dβ) (2)

where:

• Kβ
x is supported on Cβ(x).

• Mx is a mixing measure stochastically larger than Unif(0, 1).

Can we find Q⋆
x s.t (1) becomes equality for each α ∈ [0, 1]?
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Inner probabilistic approximations

Yes, this is the inner probabilistic approximation

• A Canonical Approximation of the form

Q⋆
x{Cα(x)} = 1− α ∀α ∈ [0, 1],

is derived by making the following choices in (2)

• Set Mx = Unif(0, 1) and support Kβ
x on the boundary ∂Cβ(x).

• A practical choice: Kβ
x = Unif(∂Cβ(x)).
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Sampling from the approximation

Monte Carlo sampling from a sort of ‘posterior distribution”

reduces to sampling from Q⋆
x

• Sampling Algorithm:

1. Sample A ∼ Unif(0, 1).

2. Sample Θ ∼ Unif(∂CA(x)).

• Result: Θ are samples from Q⋆
x , a valid probabilistic

approximation inside C (Πx).
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Possibilistic IM and Group Invariance

• Let G be a group of transformations on the sample space X .

• The statistical model {Pθ : θ ∈ Θ} is group invariant if:

Pθ(gX ∈ ·) = Pḡθ(X ∈ ·), ∀g ∈ G, θ ∈ Θ.

• Examples include location, scale and permutation models.

• In such models, the right Haar prior yields a standard no-prior

Bayes posterior.

• In group invariant models, the inner probabilistic approximation of

the possibilistic IM coincides with the Bayesian posterior under the

right Haar prior (Martin, 2023).

• Implication: Possibilistic IMs recover fiducial/Bayes posteriors in

invariant settings and explain properties like exact probability

matching.
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Asymptotic Normality and Efficiency

• Possibilistic IMs satisfy a Bernstein–von Mises-type result:

πxn(θ) ≈ 1− FD

(
(θ̂xn − θ)⊤Jxn(θ̂xn − θ)

)
.

• This is the Gaussian possibility contour centered at MLE θ̂xn with

covariance J−1
xn .

• Theorem: Under classical regularity conditions, the possibilistic IM

converges to a Gaussian possibility distribution.

• Implication: The inner probabilistic approximation of the IM

converges to the usual asymptotic Bayes posterior N (θ̂xn , J−1
xn ).

• Matches the Cramér–Rao lower bound ⇒ Efficient.
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Naive Strategy for IM Computation

• Naive Strategy: Approximate IM contour by Monte Carlo:

πx(θ) ≈
1

M

M∑
m=1

1{R(Xm,θ, θ) ≤ R(x , θ)}

• Xm,θ ∼ Pθ, independent samples.

• Requires dense evaluation over T—computationally intensive.
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Efficient Strategy for Inner Probabilistic Approximations

• Efficient Strategy:

• Sample from the inner probabilistic approximation Q⋆
x using

elliptical confidence sets.

• Construct Gaussian-shaped sets:

C ξ
α(x) =

{
θ : (θ − θ̂x)

⊤Jξx (θ − θ̂x) ≤ χ2
D,1−α

}
• Embellished Fisher information:

Jξx = E diag(ξ−1)Λdiag(ξ−1)E⊤.

• Implementation:

• Choose ξ = ξ(x , α) such that Cα(x) ⊆ C ξ
α(x).

• Sample from Kα
x = Unif(∂C

ξ(x,α)
α (x)).

• Result: Practical, conservative implementation of Q⋆
x with

theoretical guarantees.
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Behrens–Fisher Problem

The Behrens–Fisher problem involves independent samples of size

n1 and n2 from two distinct normal populations:

X1 ∼ N (Θ11,Θ
2
12), X2 ∼ N (Θ21,Θ

2
22)

The goal is to perform marginal inference on the difference of the

two means:

Φ = m(Θ) = Θ21 −Θ11

The problem is straightforward when the variances are known or

their ratio is known. However, the fully unknown variance case

remains elusive, with various solutions proposed but no consensus

on the ”best” approach.
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